On the minimal energy of conjugated unicyclic graphs with maximum degree at most 3

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On reverse degree distance of unicyclic graphs

The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...

متن کامل

Maximizing Kirchhoff index of unicyclic graphs with fixed maximum degree

The Kirchhoff index of a connected graph is the sum of resistance distances between all unordered pairs of vertices in the graph. Its considerable applications are found in a variety of fields. In this paper, we determine the maximum value of Kirchhoff index among the unicyclic graphs with fixed number of vertices and maximum degree, and characterize the corresponding extremal graph.

متن کامل

On Reverse Degree Distance of Unicyclic Graphs

The reverse degree distance of a connected graph G is defined in discrete mathematical chemistry as D(G) = 2(n− 1)md− ∑

متن کامل

on reverse degree distance of unicyclic graphs

the reverse degree distance of a connected graph $g$ is defined in discrete mathematical chemistry as [ r (g)=2(n-1)md-sum_{uin v(g)}d_g(u)d_g(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $g$, respectively, $d_g(u)$ is the degree of vertex $u$, $d_g(u)$ is the sum of distance between vertex $u$ and all other vertices of $g$, and $v(g)$ is the ...

متن کامل

On the Independence Number of Graphs with Maximum Degree 3

Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs shown in Figure 1 as a subgraph. We prove that the independence number of G is at least n(G)/3 + nt(G)/42, where n(G) is the number of vertices in G and nt(G) is the number of nontriangle vertices in G. This bound is tight as implied by the wellknown tight lower bound of 5n(G)/14 on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2015

ISSN: 0166-218X

DOI: 10.1016/j.dam.2015.01.033